In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs, outputs and states, the variables are expressed as vectors and the differential and algebraic equations are written in matrix form (the latter only being possible when the dynamical system is linear). The state space representation (also known as the “time-domain approach”) provides a convenient and compact way to model and analyze systems with multiple inputs and outputs. With inputs and outputs, we would otherwise have to write down Laplace transforms to encode all the information about a system. Unlike the frequency domain approach, the use of the state-space representation is not limited to systems with linear components and zero initial conditions. “State space” refers to the space whose axes are the state variables. The state of the system can be represented as a vector within that space.

[https://en.wikipedia.org/wiki/Control_theory]
Main Research Area of Control Theory

Robust Control (click)

Time Delay System (click)

Signal processing is an enabling technology that encompasses the fundamental theory, applications, algorithms, and implementations of processing or transferring information contained in many different physical, symbolic, or abstract formats broadly designated as signals.[1] It uses mathematical, statistical, computational, heuristic, and linguistic representations, formalisms, and techniques for representation, modelling, analysis, synthesis, discovery, recovery, sensing, acquisition, extraction, learning, security, or forensics.

[https://en.wikipedia.org/wiki/Signal_processing]
Our laboratory is especially interested in the Adaptive Filter
Main Research Area of Signal Processing

Adaptive Filter (click)

Machine Learning (click)